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Abstract 

      This work has been concentrated on designing three electrodes 

electrostatic einzel lens whose electrodes are equidiameter cylindrical in 

shape separated by an air gap.  The charge density method for solving 

Laplace's equation has been carried out in the field of non-relativistic 

charged-particle optics under the absence of space-charge effects. Potentials 

have been determined anywhere in space by using Coulomb’s law. The 

paraxial ray equation has been solved with the aid of the computed axial 

potential distribution in order to determine the trajectory of the charged-

particles beam along the lens field using Runge- Kutta method. The optical 

properties of the einzel lens have been investigated under zero and infinite 

magnification conditions. 
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Introduction 

    Many computer programs have been developed for solving problems in 

electrostatic charged particle optics.  Nearly all of the programs are based 

on one of the following methods (a) Finite Difference Method (FDM) (b) 

Finite Element Method (FEM) and (c) Boundary Element Method (BEM).  

The BEM is also known as charge density method (CDM) or boundary 

charge method (BCM); see for example [1].  

     A new method is presented of solving Laplace’s equation for 

equidiameter coaxial cylinders separated by a finite distance. This method 

has been found to give accurate results, efficient in the use of computer 

time and storage, and applicable to a wide range of lens configurations. The 

charge density method is a particular example of Boundary Element 

Method (BEM). In most of the published work the lenses that are used for 

this purpose have been divided into N-rings; these rings are of variable 

width and are made narrower near the gap, where the charge density 

changes most rapidly [2,3]. However, in the present work the system of 

cylinders under applied potential has been replaced by a system of charged 

rings, which have the same width as illustrated in figure 1. 

 

          Figure 1. Replacing a series of cylinders under applied potentials 

with a series of charged rings [3]. 
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Method 

    To solve the problem, the cylinders have been divided into N rings; each 

ring carries a charge Qi (i =1, 2, 3,…, N) which contributes to the potentials 

of all the rings.  The potential of the ith ring can be expressed as a 

combination of the contributions from all charged rings [3]. Consider the 

lens cylinders of radius cr and length 10 cr  [4]. The combined charge 

densities on the surfaces of the cylinders are icii zrQ   4/ , where 

iz represents the width of the ith rings. If there are no other charges 

present then the potential at any point z in space is given by,                         
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where  H =1-ki
2  which is a dimensionless factor.  The potential jV at a 

point C on the ith element is due to a constant charge density σ on each 

element, which is uniformly distributed around a circle of radius cr .  The 

potential jV is given by the following expression [6],             
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where 
jiA  is a square matrix element.  The above set of equations may be 

reduced to the following simple matrix equation, 

                                          AV                                          ……  (4)  

The charge density σ is mathematically considered a column vector.  In 

applying this procedure to the cylinder problem one may take same values 

of the voltage applied on the first and third electrodes and different value 

for second electrode, the column vector σ is then obtained by inverting the 

matirx A [2,7].  Hence, from equation (4),                   VA  1                                                

….(5) 

In the present work an iterative procedure is used to get the inverse of 

matrix A  with the aid of a computer program based on LU-Factorization 

method [8]. To evaluate the elements of A  one needs to know the potential 

at the strip j caused by a uniform charge density σi in the strip i. The matrix 

element jiA  is given by [4], 
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iz   and  jz  being the mid point of the ith and jth ring respectively; they 

are given by 2/)( 11   iii zzz  and 2/)( 11   jjj zzz .  It should be 

noted that when j is equal to i the elliptic integral (equation 2) will be 

infinite and a singularity in the potential V  is caused but not in iiA  itself. 



 184 

The Trajectory equation of motion of a charged particle travelling at a non-

relativistic velocity in an electric field near the axis of a cylindrically 

symmetric system can be reduced to the following equation [9,10], 
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where   U   and U   are the first and second derivatives of the axial 

potential U respectively.  R represents the radial displacement of the beam 

from the optical axis z. The most important aberrations in an electron-

optical system are spherical and chromatic aberration. Thus the present 

work has been focused on determining these two aberrations for an einzel 

electrostatic lens. The spherical and chromatic aberration coefficients are 

denoted by Cs and Cc respectively. In the present investigation the values 

of Cs and Cc are normalized in terms of the image side focal length. The 

spherical aberration coefficient Cs and the chromatic aberration 

coefficient Cc referred to the image/object side are calculated from the 

following equations [5].                              
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where )(zUU  is the axial potential, the primes denote derivative with 

respect to z , and )( ii zUU  is the potential at the image where 

izz  . The integration given in the above equations are executed by 

means of Simpson’s rule [5,11]. In the present work, equations (8) and (9) 

have been used for computing Cs and Cc in the image side under various 

magnification conditions. 

Results and discussion 

        Due to the limited number of elements of the matrix A each electrode 

has been divided into equal rings the charge density distribution due to the 

applied voltages (figure 2) on the electrodes region each point on the graph 

represents a uniform charge density for a particular ring.  Within the air gap 

there is no charge density due to the rings situated at the two terminals of 

each electrode, which are at a close proximity to air. Further more, the 

charge density on the 1st and 3rd electrodes are similar in shape at the lower 

voltage and its values is less than the charge density on the  2nd electrode at 

the higher voltage.  

  It is assumed that a potential V1=10 volts is applied on the 1st and 3rd 

electrodes of figure 1 and V2=18volts on the 2nd electrode. The diameter D 

and length L of each cylinder are 10 rc. The axial potential distributions are 

shown in figure 3.  There is a field-free region when E (z)=0 outside the 

lens boundaries. It is seen that the gradient of the curve at the region of the 

two gaps close to the higher voltage electrode increases while that close to 

the lower voltage electrode decreases.  The potential U (z) at this maximum 

point of the curve (Z =0.0) equals to 18V, which is the potentials applied on 

the 2nd  electrode. Furthermore, this maximum point can be used as a 

criterion for the classification of the lens whether it is symmetrical or 



 186 

asymmetrical. Within the air gap region, the potential on the side of the 

lower voltage electrode penetrates the hollow cylindrical electrode and its 

gradient diminishes at a point (Z=-2.5mm).  The value of the potential at 

this point is equal to the voltage applied on the corresponding electrode (i.e. 

U(z)=10V). On the other hand, the potential on the side of the higher 

voltage electrode penetrates the hollow electrode region and its gradient 

diminishes at a point (Z=+2.5mm) where its value equals to that of the 

applied voltage. 
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Figure2. The charge density distribution on three electrodes . 
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Figure 3. The axial potential distribution on the einzel lens .   

     

    The electron beam path along the electrostatic lens field under zero 

magnification condition and accelerating mode of operation has been 

considered. Figure 4 shows the trajectories of an electron beam traversing 

the electrostatic lens field. Computations have shown that as the beam 

emerges from the lens field it converges towards the optical axis provided 

that V1/V2 does not exceed 0.55. In this case the beam intersects the optical 

axis once.  However, as V2/V3 exceeds 1.8, the beam emerges divergent; 

this is due to the increase of the lens refractive power with the increase of 

the voltage ratio. The distortion of the trajectory increases in the regions 

between the 1st and 2nd electrodes and in the region between the 2nd and 3rd 

electrodes at the entrance side of the beam.  
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Figure 4. The electron beam trajectory in the electrostatic einzel lens 

under zero magnification condition 

 

The spherical and chromatic aberration coefficients have been given 

Considerable attention in the present work since they are the two most 

important aberrations in electron optical system.   

    Under zero magnification it is seen that as the voltage ratios V2/V1 

increases, the relative spherical aberration coefficient Cs/fi decreases but 

the relative chromatic aberration coefficient Cc/fi respectively increasing 

linearly. At (V2/V1 =8) the value of Cs/fi  has a minimum  value equal 

(66.5079) .When (V2/V1 =2) the value of Cc/fi has a minimum  value equal 

(3.048119), as shown in figure (5).  
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Figure 5.The spherical and chromatic aberration coefficients under 

zero magnification condition 

 

Under infinite magnification, it seen that as the voltage ratios (V2/V1) 

increasing , the relative spherical aberration coefficients  Cs/fo  are 

decreases .At the voltage ratio (V2/V1 = 1.8 ) the spherical aberration 

coefficients has a minimum value  (Cs/fo =32.1375 ) , also the relative 

chromatic aberration coefficient Cc/fi  are decreases and at the voltage ratio  

(V2/V1 =8) the chromatic aberration coefficients has a minimum value  

(Cc/fo  = 1.21875)  ,as shown in figure (6).  
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Figure 6.The spherical and chromatic aberration coefficients under 

infinite magnification condition 

 

Conclusions 

        The charge density method uses on the design of electrostatic lenses 

appears to be an excellent tool in the field of electron-optical design.  The 

cylindrical einzel  lens that has been designed by the above method is found 

to have different optical properties depending upon various geometrical 

parameters in addition to the mode of operation.  For instance under zero 

magnification mode of operation this lens did not exhibit acceptable 

properties from the electron-optical point of view.  However, in the infinite 

magnification mode of operation the lens performance was found to be 

excellent.  The optical properties are highly dependent on the geometrical 

factors of the lens such as the radii and the lengths of the cylinders.  Thus, 

one could now apply the charge density method on designing various types 

of electrostatic lenses. 
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